Table of Contents

Expedition Gear

In 1804, Lewis and Clark’s Corps of Discovery set out to cross a continent. Along with them went two tons of equipment selected by Lewis and his patron, President Thomas Jefferson. Their list included 10 lbs. of fishhooks, a sextant, a chronometer, and four compasses. The group returned two and a half years and 8,000 miles later, having lost only one companion (to a ruptured appendix, an untreatable condition at the time).

A century later, Norwegian explorer Roald Amundsen spent two years in the Antarctic and was the first to reach the South Pole – beating Englishman Robert Scott by a mere 35 days. All of Amundsen’s party returned safely; all of Scott’s perished. The deciding factor, according to Amundsen, was planning and equipment.

LIGHTS

The well-prepared man always has a means of making light; the paranoid man, several means. Below are many options. For general game effects, see Visibility (p. B394).

Candles (TL0)

Candles remain the main lighting technology through TL5. In the 1700s, the average family used 40 lbs. of candles a year. Lewis and Clark’s expedition took along moulds and wick to make tallow candles as needed. During the American Civil War, the U.S. Army ration was 1.5 lbs. of candles per 100 men each day.

There are two major types of candles: tallow and wax. Tallow candles are made from rendered fat; they stink, produce more smoke, and sputter loudly as they burn. Wax candles produce no odor unless perfumed, and are nearly silent. A candle of either kind produces enough light to read by, or to illuminate a 2-yard radius.

Tallow Candles (TL0). These are issued in some military survival kits until the 1950s, because tallow can be eaten – treat 0.5 lb. as a meal. Burns 4 hrs. per ounce (1/16 lb.). Per ounce: $0.03. LC4.

Wax Candles (TL1). Made of beeswax, whale oil (spermaceti), or paraffin. All produce a clean, odorless flame. Burns 8 hrs. per ounce. Per ounce: $0.30. LC4.

Candle-Lantern (TL5). A candle-lantern allows still-air burning rates even in the wind. A typical model is the size of soda can and equipped with a shutter to conceal the light. $5, 0.5 lb. LC4.

Lanterns (TL5)

Oil-burning lanterns started to supplant candles as the standard light source during the American Civil War period. The trend continued until electricity finally reached the most remote backwaters of the U.S. in the 1930s.

At TL5, the most common fuels are whale oil (made from blubber), turpentine, and camphene (an alcohol-turpentine mixture). At TL6+, lanterns typically burn kerosene (p. 16) or lamp oil – purified kerosene that produces a clean-burning flame. The duration of a pint of fuel is given for each type of lantern, below.

Lanterns are much brighter than candles, but they aren’t durable. They’ll break if dropped on hard ground (roll vs. HT 6) and take 30-60 seconds to relight. They can burn in a wet environment such as a rainstorm, but are instantly extinguished if submerged.

Bull’s-Eye Lantern (TL5). A signal lantern used by sailors, soldiers, police, and railroad conductors. It has a glass lens and a shutter. Photographers cover the lens with red silk or paper when working in the darkroom. A lantern of this type was recovered from the wreck of the H.L. Hunley. 10-yard beam. Pint/6 hrs. $25, 2 lbs. LC4.

Glass Lantern (TL5). Most lanterns were of ornamental glass, and were kept by the table for sewing or reading at night. Such a lantern is fragile, and will cause a 1-yardradius fire if it breaks (see Molotov Cocktail, p. 191). Illuminates a 5-yard radius. Pint/10 hrs. $15, 2 lbs. LC4.

Carbide Lamp (TL6). Popular with spelunkers and miners since the 1890s, this consists of a belt- or head-mounted light. The user puts carbide and a small amount of water in the generator, which produces acetylene gas. It burns for 5 hours on 0.25 lb. of carbide ($0.30 per refill). Illuminates a 5-yard radius or projects a 10-yard beam. $50, 3 lbs. LC4.

Kerosene Lantern (TL6). A covered “hurricane” lantern that can’t be blown out. It’s also self-dousing, so it has little chance of causing a fire if dropped. Kerosene lanterns were first produced in the 1860s and are still manufactured today. At TL8, dual-fuel versions (¥2 cost) burn both gasoline and kerosene. Illuminates a 5-yard radius. Pint/12 hrs. $25, 4 lbs. LC4.

Electric Lanterns (TL6)

Electric lanterns appear at TL6 but can’t match the duration of fuel-burning ones until TL8. On the other hand, they can’t be snuffed by wind or doused by water, don’t require dangerous fuel, and are safe in volatile atmospheres. Most importantly, they can be turned on and off quickly.

Electric Lantern, Small (TL6). 3-yard radius. $5, 4 lbs., M/4 hrs. LC4.

Electric Lantern, Small (TL7). 3-yard radius. $5, 2 lbs., 3¥S/4 hrs. LC4.

Electric Lantern, Large (TL8). 5-yard radius. Double cost for dive-certified models that can operate to a depth of 600’. $30, 3 lbs., 4¥S/20 hrs. LC4.

Flashlights (TL6)

Eveready’s “electric hand torch” debuted in 1898. The body was a paper tube. The flashlight’s small size and reliability made it a common item in almost every toolbox or automobile glove compartment by the 1920s.

A regular flashlight can be converted to an IR illuminator by adding a snap-on filter. Its bulb assembly can be changed to produce UV light, making it useful for forensic work, tracking alien blood, etc. Either modification costs $25.

It takes a Ready maneuver to turn a flashlight off or on, adjust the beam, switch settings, etc.

Flashlight (TL6). A basic flashlight. Batteries last 10¥ as long at TL8. 10-yard beam. $20, 1 lb., 2¥S/5 hrs. LC4.

Micro-Flashlight (TL6). A tiny penlight or key-ring light. Batteries last 10¥ as long at TL8. 1-yard beam. $5, neg., T/2 hrs. LC4.

Mini-Flashlight (TL6). A pocket-sized light. At TL8, the batteries last 10¥ as long and this type of light is often worn on the head, which allows hands-free use: the light points wherever the user is looking. 5-yard beam. $10, 0.25 lb., 2¥XS/1 hr. LC4.

Survival Flashlight (TL6). Gives 3 minutes of light after 30 seconds of winding or shaking. At TL8, double duration (to 6 minutes) but halve weight. 1-yard beam. $20, 1 lb. LC4.

Floodlight (TL7). A large, portable spotlight. Double cost for dive models that can operate to a depth of 600’. If aiming the light in combat, treat as a searchlight (p. 228). 200-yard beam. $100, 3 lbs., M/4 hrs. LC4.

Smart Flashlight (TL8). A flashlight with a super-bright light and a dimmer switch. It can switch between white, red, green, and infrared-only (as an infrared illuminator, p. 47). 50-yard beam for 2 hour or a 5-yard beam for 40 hours. $300, 0.5 lb., 2¥XS. LC4.

Tritium Illuminator (TL8). A light the size of ballpoint pen cap, bright enough to let one read a map or see a keyhole. The radioactive tritium gas inside stimulates a phosphor, making it self-powered for 10 years. It can be shuttered by turning a knob, but it can’t be shut off. $10, 0.1 lb. LC4.

Chemlight (TL7)

In the mid-1970s, the U.S. military developed a chemical-luminescent light that didn’t produce heat or require batteries. The “chemlight” or “glowstick” was born. Simply snap the plastic rod and shake for three seconds. Most models provide 12 hours of light and come in a variety of colors – including a version that acts as an infrared illuminator (p. 47). Illuminates a 2-yard radius. $2, 0.1 lb. LC4.

Tactical Lights (TL7)

Tactical lights are powerful, waterproof flashlights used by soldiers and police. They come in to two sizes: small and large. The small version can be mounted on any firearm, and illuminates an area immediately in front of the muzzle. Held in the fist, it can be used to deliver a devastating punch; treat as brass knuckles (p. B271). The large model is more powerful, and can be mounted on a rifle, shotgun, or SMG. It counts as a baton (p. B273) in melee combat.

A tactical light is bright enough to momentarily stun the opposition in potential surprise situations (p. B393). As well, those who look directly into the light must make a HT-4 roll or be temporarily blinded. Blindness lasts for 10 seconds times the margin of failure.

A tactical light is the flashlight of choice for those who need the most powerful, dependable hardware available. Treat it as rugged and expensive to begin with (see Integrating and Modifying Equipment) – don’t add those options again.

Large Tactical Light (TL7). 100-yard beam. $200, 2 lbs., 4¥S/1 hr. LC4.

Small Tactical Light (TL7). 25-yard beam. $100, 1 lb., 2¥S/2 hrs. LC4.

Large Tactical Light (TL8). 100-yard beam. $200, 0.5 lb., 4¥XS/2 hrs. LC4.

Small Tactical Light (TL8). 25-yard beam. $100, 0.25 lb., 2¥XS/2 hrs. LC4.

At TL5, the basic tools of navigation include the compass, the sextant, and the marine chronometer. At TL8, GPS makes navigation far easier and more precise.

Compass (TL5)

A compass exploits the fact that a magnetized needle orients itself toward the Earth’s poles. This doesn’t reveal true north, but magnetic north. (On other planets, the two might be far apart, or there might not even be a magnetic field!) A compass gives +1 to Navigation (Air, Land, or Sea). Styles vary, from pocket watch-style compasses that open to reveal a sundial (popular with Rogers’ Rangers during the French and Indian War) to models worn on the wrist, stored in the handle of a survival knife (p. 197), etc. $25, neg. LC4.

Maps (TL5)

The first topographic map of an entire country was completed in France in 1793 – the work of four generations of cartographers. Louis and Clark mapped parts of the Louisiana Purchase, and the Union army produced nearly 50,000 maps a year during the American Civil War. American infantry divisions during WWII printed maps by the ton, which were updated constantly from aerial reconnaissance.

Successful use of the Cartography skill (p. B183) allows a mapmaker to create a map accurate enough for navigation – that is, to fix a location or plot a course. However, collecting the information to place on a map can involve a variety of skills: Observation, Electronics Operation (Sensors), Interrogation, Photography, etc. For more on mapping, see Mapping Overland Journeys (p. B491).

An accurate map is considered basic equipment for the Forward Observer and Navigation skills. Inaccurate maps give from -1 to -5 for improvised equipment. Having no map at all gives -10!

Costs range from free to exorbitant; $15 for a national road atlas and $30 for a detailed topographic map of a region are typical. At TL8, topographic maps for an entire continent are $100 and fit on one CD. Weight is 0.1 lb.

Marine Chronometers (TL5)

An invention of the 1760s, the marine chronometer is a clock accurate to within seconds over the course of several months. It’s kept set to the time at a location of known longitude – historically, Greenwich, England. The constant rotational speed of the Earth lets a navigator use the difference between the set time and local time to fix his longitude. Many ships carry three chronometers as a safety measure.

A marine chronometer gives +1 to Navigation (Sea) by itself. When used with navigating instruments (below), the combined bonus is +3.

Pocket Chronometer (TL5). A chronometer the size of an oversized pocket watch. $500, 0.5 lb. LC4.

Ship’s Chronometer (TL5). An extremely accurate clock, mounted in gimbals so as not to be affected by the motion of a ship. $1,000, 15 lbs. LC4.

These include chart books, compass, sextant (or its precursors, cross-staff and astrolabe), dividers, lead line, log (to toss overboard to figure speed), and sand-glass (to measure time). Collectively, this gear gives +2 to Navigation (Sea) at TL5, +3 at TL6+. $3,000, 30 lbs. LC4.

Surveying Instruments (TL5)

Surveyors are in constant demand for road, bridge, and fortress construction. A typical surveying crew consists of three or four men. Starting from a known point, they can locate any point within five miles to an accuracy of one inch. This requires a day’s work. The necessary tools include compass, transit, chains, flags, plotting boards, and drawing instruments. These provide +2 to Mathematics (Surveying) or Navigation (Land). $1,000, 300 lbs. LC4.

Global Positioning System Receiver (TL8)

In 1978, the U.S. launched the first Global Positioning System (GPS) satellite, fitted with extremely precise timeand station-keeping electronics. A receiver on the ground can locate itself via the signals broadcast by a “constellation” of several such satellites within line of sight, thereby providing accurate coordinates in three dimensions (latitude, longitude, and altitude). The unit also displays the exact time – the satellites’ internal clocks are synchronized to within nanoseconds!

A GPS receiver gives +3 to Navigation (Air, Land, or Sea) while it’s within line of sight of a satellite constellation. Maximum accuracy is to within a few feet. Early units were the size of a paperback book, but the smallest ones today fit inside a wristwatch or other tiny electronic device (add $50). A typical handheld model, the size of pack of cigarettes: $100, 0.25 lb., 2¥S/40 hrs. LC4.

LOAD-BEARING GEAR

When setting off on an adventure, all the supplies and high-tech gadgets in the world won’t do you much good if you can’t carry or ship them!

Canteens (TL5)

A canteen (from the Italian cantina, meaning “wine cellar”) is a water flask – a desert explorer’s most important kit. All of these containers but the water pack slosh loudly if not filled to the brim, negating the Stealth benefits of load-bearing equipment (p. 54). The weights given assume a container full of water (2 lbs./quart). Note that water in a canteen will soon freeze solid in winter.

Canteen (TL5). A basic, 1-quart canteen. At TL5, it’s made of wood, copper, or tin. At TL6, it’s aluminum or steel, often with a small cup, and easily wrecked if handled roughly (stepped on, dropped from a height, etc.). At TL7+, plastic models are much less susceptible to damage. These have a receptacle in the cap that mates with a tube on a gas mask (p. 72), making it possible to drink from them in NBC conditions. $10, 3 lbs. LC4.

Charcoal-Filtered Canteen (TL5). During the American Civil War, sutlers peddled what looked like an ordinary, quart-sized tin canteen. However, inside was a charcoal filter. Water was poured in one spout, passed through the filter in the middle, and poured out from the other side, ready to drink. This gives +2 to HT rolls when drinking bacteriaridden water (see Contagion, p. B443). $25, 3 lbs. LC4.

Water Bottle (TL8). A 1-quart drinking bottle made from shatterproof plastic, popular with athletes and outdoorsy types. $10, 2.5 lbs. LC4.

Water Pack (TL8). A 2-quart flexible bladder worn on the back, with a drinking tube that extends over the shoulder. The hose is bite-activated, so that the user can sip from it. Most backpacks can accommodate a water pack. $25, 5 lbs. LC4.

Containers (TL5)

Whether planning a year-long expedition or a weekend trip, a traveler should pack his equipment carefully if he expects to find it in one piece at his destination. The shipping method determines the skill required: Packing (p. B212) if animals are involved, Freight Handling (p. B197) for vehicles of all types. A successful roll ensures that the cargo survives intact. The GM may assess penalties if the cargo is nonstandard (how do you ship an elephant?) or fragile, or if the route or shipping method is particularly arduous. A camera is far more likely to survive a 1,000-mile journey on a jet plane than on a buckboard! Likewise, the GM may grant bonuses for extra precautions, including high-quality containers (p. B345).

Steamer Trunk (TL5). An iron-banded travel trunk with lock. Holds 400 lbs. or 5 cubic feet. DR 2. $200, 40 lbs. LC4.

Wooden Barrel, Large (TL5). Holds 30 gallons. DR 1. $200, 50 lbs. LC4.

Wooden Barrel, Small (TL5). Holds 5 gallons. DR 1. $65, 20 lbs. LC4.

Wooden Crate (TL5). Holds 300 lbs. or 5 cubic feet. DR 1. $25, 20 lbs. LC4. 55-Gallon Drum (TL6). DR 3. $50, 55 lbs. LC4. 5-Gallon Can (TL7). A common fuel or water container. DR 3. $15, 10 lbs. LC4.

Cargo Containers (TL7)

At TL7-8, shippers use a cargo container – sometimes called a “container express,” or “conex” – to protect cargo. A conex is a sheet-metal box that provides a safe means of moving cargo via multi-modal transportation (ship, rail, and truck). Conexes can be stacked atop one another on ships and trains, handled by cranes, or attached to wheels and towed like trailers.

Conexes can be found by the thousands at major ports, train stations, and trucking hubs. The most common sizes are 20’ and 40’. Both come in “dry” and refrigerated versions. They can be converted to offices, storage sheds, guard shacks, munitions-storage facilities, etc., with minimal effort.

20’ Conex (TL7). 20’¥8’¥8’6”. Gross weight is 26.5 tons. DR 4. $1,500, 2.5 tons (empty). LC4.

40’ Conex (TL7). 40’¥8’¥8’6”. Gross weight is 33.6 tons. DR 4. $1,500, 4 tons (empty). LC4.

Load-Bearing Equipment (TL5)

Until late TL5, load-bearing equipment (LBE) – the belts, bandoleers, etc., that soldiers wear to carry kit – is made of leather. It’s heavy, shiny, and squeaky. It tends to dry rot quickly, and requires a lot of cleaning and polishing to outlast a single military campaign.

In 1877, U.S. Army Capt. Anson Mills drew on his experiences as a cavalry officer in the Indian Wars to develop the first cartridge belt made of fabric webbing. In his words, it was “lighter, more flexible, did not require oiling, and was less likely to break in the process of wetting and drying.” Mills’ webbing proved popular in America and abroad. He established the Mills Woven Cartridge Belt Company in 1880 and retired a millionaire.

Proper LBE doesn’t merely help adventurers lug lots of gear – it lets them carry it efficiently. It comes in the standard quality grades (p. B345). The user must make a Soldier or IQ-based Hiking roll to set up and maintain LBE. Success lets the wearer add the quality bonus of his LBE to several die rolls, as described below. Failure means the LBE counts as improvised at best, giving -2 or worse instead.

First, the GM may require a DX roll to reach gear if it or its user is in an awkward position; e.g., a soldier lying atop his grenades or magazines, or trying to grab a grenade while hanging one-handed from a helicopter skid. Readying in close combat (p. B391) also calls for a DX roll. The quality bonus of LBE benefits these rolls.

As well, retrieving an article crammed into a pack, cargo pocket, etc., is a “long action” that takes 1d or 2d seconds (p. B383). Fast-Draw isn’t allowed. Grabbing an item from properly set-up LBE requires only a single Ready maneuver – and a roll against a suitable Fast-Draw specialty makes this a free action. Add the quality bonus of LBE to such Fast-Draw rolls. Most people secure the flaps on LBE pouches (and packs) so things won’t fall out; opening a flap adds an extra Ready maneuver.

Finally, quality LBE benefits Stealth. With no LBE or only TL5 gear, Stealth suffers a penalty equal to encumbrance level; see p. B222. At TL6+, reduce this penalty by the quality bonus of LBE.

Cartridge Bandoleer (TL5). Bandoleers are a simple way to carry ammunition ready to use. They’re worn across the chest. A typical bandoleer holds 50 rifle, shotgun, or pistol rounds in loops. Takes one second (a Ready maneuver) to don or remove. $15, 1 lb. LC4.

Cross-Belts and Cartridge Pouch (TL5). A typical rig for a soldier from the 1700s through 1870, with leather belts crossed like suspenders and attached to a waist belt. A leather pouch – often metal-lined or with a wooden block inside – holds 20-40 paper cartridges. Takes five seconds to don, two seconds to remove. $50, 5 lbs. LC4.

Web Gear (TL6). A canvas belt and suspenders, with pouches for ammunition and equipment. A typical setup is two ammo pouches in the front; canteen, entrenching tool, or other gear on each hip; and a “butt pack” on the back. Fully loaded, it may support 20-30 lbs. Takes five seconds to don, two seconds to remove. $20, 3 lbs. LC4.

Load-Bearing Vest (TL7). The modern assault vest dates to the Vietnam War, and becomes popular in the late 1980s among SWAT teams and the like. An LBV is easier to take on and off – and the gear is carried up on the torso, which protects the contents when wading in water. It’s also less cumbersome in tight spots, which is important to tankers and aircrew. It’s designed to hold 20-30 lbs. of gear. Modern body armor often features integral pouches and attachment points, making it equivalent to a LBV. Takes two seconds to don or remove. $30, 2 lbs. LC4.

Packs and Bags (TL5)

Explorers and soldiers alike prize a well-constructed backpack; for anyone who lives out of his pack, it pays to get the best tool for the job. British regulars during the Revolutionary War carried shaggy goatskin knapsacks – or flimsy canvas or linen bags, painted for extra protection. At TL5-6, most packs are leather or canvas like this, and incapable of keeping out the rain. At TL7, packs are made of water- and mildew-proof synthetics. At TL8, advanced ergonomic features – including S-shaped shoulder straps, internal frames, hip pads, and wide, padded waist belts – make it easier than ever to pack a heavy load comfortably.

Make a Soldier or IQ-based Hiking roll to fit a pack. Failure means a poorly fitted pack that will cause moderate pain (see Afflictions, p. B428) after a day of hiking. The -2 for pain definitely applies to the Hiking skill! Quality equipment grants a Hiking bonus but is hard to find before TL7 – it’s the purview of custom outfitters, and generally made-to-order. Expedition packs can cost many hundred dollars.

At TL8, halve all pack weights.

Backpack, Small (TL5). A small backpack or haversack. From the French and Indian War until 1900, soldiers typically carried packs of this size. Holds 50 lbs. Double cost at TL8. $60, 3 lbs. LC4.

Travel Bag (TL5). A leather duffle or similar. Holds 100 lbs. $60, 10 lbs. LC4.

Waist Pack (TL5). A small haversack, large purse, or “butt pack.” Holds 10 lbs. $10, 1 lb. LC4.

Backpack, Large (TL6). A heavy pack with frame. Dubbed a “mountaineering pack” by some, it’s typical of most modern military expedition packs. Holds 100 lbs. Double cost at TL8. $100, 10 lbs. LC4.

Humping, Tramping, and Yomping

Whatever you call it, marching cross-country under full kit is exhausting. The hiking rules in the Basic Set are intentionally simplistic – they assume fine weather, ideal terrain, and a grueling 16-hour day spent doing nothing but putting one foot in front of the other. Hikers often march for less than a full day, which can make it useful to know hourly movement rates.

Assume that speed in miles per hour equals Move/2. Adjust the pace as usual for terrain, weather, and roads; see p. B351. Note the FP costs for an hour of hiking given on p. B426 – good FP scores and the Fit advantage (p. B55) give a significant edge here! Extra effort works as usual (see p. B357). Each foraging attempt (p. B427) takes an hour, during which no progress is made.

CLIMBING AND MOUNTAINEERING GEAR

Perhaps the most famous climb in modern memory is George Mallory’s third attempt at Mt. Everest in 1924. Mallory and assistant Sandy Irvine were last seen less than 300 yards from the summit – “moving expeditiously” toward the top, as one observer famously said – before they vanished. New Zealander Sir Edmund Hillary and his Sherpa, Tenzing Norgay, succeeded in 1953. Mallory’s remains were discovered in 1999, but the mystery of whether he and Irvine beat Hillary to the top remains.

Climbing Equipment (TL5)

Climbing is a complicated and potentially dangerous undertaking. Ropes fray, bolts pull loose, and high winds can toss a climber off a precipice without warning. Sometimes, though, tackling a crag (or an office tower!) is the only way to get the job done.

The well-equipped climber wears a harness connected to a safety line that is tied off to fasteners. This will stop his fall, should one occur. The results of a fall depend largely on the terrain and the precautions taken. In general, the maximum distance the climber can fall is twice the distance between the last fastener and his current position. Safety-conscious climbers tie off every few feet, guaranteeing a short fall with little chance of injury. Braver souls – and those in a hurry – tie off less often.

The easiest way to come down is to rappel. This requires rope, a harness, and a carabiner or descender. Normally, the climber faces the wall (mountain, building, etc.), looks over his shoulder as he slides down the rope, and pushes off the wall with his feet. A more daring method is to stand directly out from the wall, facing downward, and run toward the bottom. SWAT men and soldiers sometimes rappel this way so that they can shoot on the way down! This counts as bad footing and a minor distraction, for a net -4 to hit (see p. B548) – but the Sure-Footed perk (p. 250) can partially mitigate the penalty.

Climbing is possible without special gear, but speed is reduced and there’s no limit to how far you can fall. For climbing and rappelling speeds, see Climbing (p. B349). For the consequences of a failed climb, see Falling (p. B431).

Fasteners (TL5). Also called “protection,” these devices hold a rope fast in case the climber slips. Models differ by function: some are hammered into rock, others are placed in cracks or crevices, and still others are screwed into solid ice. Be they soft iron spikes ($1, 0.5 lb. apiece), steel pitons ($5, 2.5 lbs. for 10), or ice screws ($5, 0.25 lb. apiece), all penetrate the climbing surface. LC4.

Harness (TL5). A climbing and rappelling harness with several snap-links or carabiners. $75, 3 lbs. LC4. Ascender (TL6). Uses a cam or a ratchet to ascend a freehanging rope. Cancels the -2 for climbing up a rope (p. B349). $50, 1 lb. LC4.

Descender (TL6). A D-shaped device for rappelling down a rope. Cancels the -1 for climbing down a rope (p. B349), and allows the climber to stop and hang in midair with both hands free. $50, 0.75 lb. LC4.

Hand Drill (TL7). A one-man rock drill (p. 26). It requires one hand to hold the drill bit and another to hammer. It takes 30 minutes to drill a 3” bolt hole in normal rock. Bolts ($5, 0.1 lb. apiece) are hammered into the hole, and expand to grip the sides firmly. $50, 0.5 lb. LC4.

Climbing Kit (TL8). Harness, ascender, descender, an assortment of fasteners, and 100 yards of 3/8” rope. A highquality kit provides a bonus to Climbing skill. $400, 26 lbs. LC4.

Mini-Rappel Kit (TL8). A complete rappelling system: harness, carabiner, descender, and 33 yards of 1/4” rope. The whole kit fits in a small belt pouch. $150, 3 lbs. LC4.

Grappling Hook (TL5)

Getting a grapnel to the target requires a DX-3 or Throwing roll. Maximum throwing distance is ST¥2 yards. Load limit is 300 lbs. at TL5, doubled at TL7. When a grapnel lands on stone, concrete, or similar materials, it can ring loudly – make an unmodified Hearing roll at 1 yard. A padded grapnel (+1 lb.) gives -2 to Hearing. At TL8, double cost buys a non-sparking, nonmagnetic version. $20, 2 lbs. LC4.

Ice and Snow Gear (TL5)

If climbing is challenging and dangerous, then tackling a mountain or crossing a glacier can be downright deadly. There are over 120 corpses on Mt. Everest, with new ones added each year. Dangers include hypothermia, frostbite, avalanche, collapsing crevasses, and altitude sickness. Well-equipped modern climbers use the equipment below, plus air masks and air tanks.

Crampons (TL5). These are heavy foot spikes attached to an explorer’s boots. They “grab” the ice like football cleats, granting Terrain Adaptation (Ice) (p. B93) and giving +1 to Climbing on ice. Crampons can be worn with boots, shoes, or snowshoes. The wicked spikes give +2 to kicking damage, but are noisy when worn on tile floors, concrete, bare rock, and the like: -2 to Stealth. $100, 4 lbs. LC4.

Ice Axe (TL5). This is a one-handed tool used by climbers and explorers. The head has a hooked and serrated “pick” on one face and an adze on the other. It can be used stop a fall, or to chop handholds or steps out of ice. The butt has a sharp point and the top of the head is smooth, allowing the climber to use it as a walking stick, with the point digging into the ice for leverage. Treat as a pick (p. B271) in combat. $100, 2 lbs. LC4.

Skis (TL5). Skiers treat snow as “good” terrain when moving cross-country (see Hiking, p. B351), and retain their normal Move on level terrain. Movement uphill is halved unless using ski climbers ($15, 0.5 lb.), which give normal Move. Going downhill, tremendous speeds can be reached – Olympic skiers on prepared slopes have been clocked at 50 mph, and ski jumpers at 90 mph. Early skis are wooden, bound to the feet with leather straps. At TL8, skis are mostly laminated composite: halve weight. $175, 10 lbs. LC4.

Snowshoes (TL5). Snowshoes attach to boots with bindings of leather, cloth, or, at TL7-8, cold-resistant plastic. Their large surface area reduces the depth to which a hiker will sink into snow; treat all snow as “ankle-deep,” regardless of its actual depth (see Hiking, p. B351). The snowshoes’ bulk gives -1 to Move, however. For longdistance movement, use the Hiking skill; those unfamiliar with snowshoes are at -2 (see Familiarity, p. B169). At TL8, high-performance snowshoes weigh half as much and are faster: they prevent sprinting but don’t otherwise reduce Move. $100, 5 lbs. LC4.

Avalanche Transceiver (TL8). This is a personal rescue beacon (p. 58) with a 20- to 50-yard range when buried under snow.

Rope (TL5)

The load limits given below are working loads, set at 10% of the rope’s tensile strength. Any rope that’s likely to be given a sudden jerk, or that’s under constant tension, abrasion, or similar stressful circumstances, shouldn’t be loaded past this level. Exceeding this limit invites problems and shortens the rope’s life.

Cord (TL5). Hemp. Supports 50 lbs. Per 10 yards: $5, 1.5 lbs. LC4.

Rope, 1/2” (TL5). Hemp. Supports 300 lbs. Per 10 yards: $30, 3.6 lbs. LC4.

Rope, 2 1/2” (TL5). Hemp. Supports 1 ton. Per 10 yards: $450, 55 lbs. LC4.

Rope, 1/2” (TL6). Manila. Supports 350 lbs. Per 10 yards: $10, 2.2 lbs. LC4.

Rope, 1 1/2” (TL6). Manila. Supports 1 ton. Per 10 yards: $75, 18 lbs. LC4.

Cord (TL7). Synthetic. Seven inner lines – useful for fishing, suturing, or sewing – with a nylon covering. Supports 55 lbs. Per 100 yards: $15, 1 lb. LC4.

Rope, 1/4” (TL8). Synthetic. Supports 500 lbs. Per 10 yards: $30, 0.6 lb. LC4.

Rope, 3/8” (TL8). Synthetic. Supports 650 lbs. Per 10 yards: $25, 1.6 lbs. LC4.

Rope, 1/2” (TL8). Synthetic. Supports 2 tons. Per 10 yards: $90, 2 lbs. LC4.

Suction Cups (TL7)

In 1981, Dan Goodwin used three high-powered vacuum cups to climb the Sears Tower in six hours. Highstrength suction cups can hold up 200 lbs. and cancel the -3 for climbing a modern building (p. B349). Each: $80, 3 lbs. LC4.

Personal Lifting Device (TL8)

This is a portable, one-man climbing hoist. It clips onto a climber’s harness. At the touch of a button, it can ascend or descend a rope at 3 yards per second. A fuel cartridge ($100, 2 lbs.) powers an ascent of 200 yards. Lifting capacity is 300 lbs. $8,000, 7 lbs. LC3.

SURVIVAL AND CAMPING GEAR

When the best-laid plans fall apart, proper survival kit can mean the difference between a bad day and your last day. The same gear can make a weekend camping trip a wonderful natural experience.

Shelters (TL1)

Whether retreating from an arctic wind or hiding from the blistering sun, man’s thin skin requires shelter. Each item below notes a modifier to HT and HT-based Survival rolls to avoid FP loss in freezing weather (p. B430); having no equipment gives -5. Quality bonuses are cumulative with these modifiers. As well, appropriate sleeping gear improves sleep quality, reducing the likelihood of FP loss and consequent penalties to DX, IQ, and self-control rolls (see Missed Sleep, p. B426).

Blanket (TL1). The most likely sleeping gear up to World War I is a simple woolen blanket (or several blankets, in extreme cold). During the American Civil War, soldiers on both sides carried a blanket roll – with a rubberized gum blanket on the outside (a tarp, below), if they were lucky. Survival modifier: -2. $20, 4 lbs. LC4.

Sleeping Bag (TL5). In the 1850s, this means a fleecelined rubberized blanket. Modern versions are made of waterproof yet breathable materials. Divide weight by 2 at TL6-7, by 4 at TL8. Survival modifier: 0 at TL5-7, +1 at TL8. $100, 8 lbs. LC4.

Tarp (TL5). A heavy canvas or rubberized ground sheet – also called a “gum blanket” or a “ground fly.” Modern versions are made of waterproof polyurethane. Ultralight backpackers use one for a tent. Halve weight at TL8. Survival modifier: +1. $20, 3 lbs. LC4.

Tent, Shelter Half (TL5). The standard U.S. Army tent from the Civil War through the 1980s, this is a small “pup” tent – so called because it’s barely big enough for a dog! It consists of two separate sheets of treated canvas, the “shelter halves.” Weight includes poles and rope, which are split between two soldiers. Survival modifier: +1. $75, 10 lbs. LC4.

Tent, Wall (TL5). A common tent for an officer or a trapper – something that Washington, Wellington, or Grant might have used for a field headquarters. It’s big enough to sleep six men. Survival modifier: +1. $350, 80 lbs. LC4.

Sleeping Bag, Heavy (TL6). A canvas-covered bag lined with sheepskin, which the 1902 Sears and Roebuck catalog called “the best bed ever invented for outdoor sleeping.” Modern waterproof versions use synthetics and are much lighter: divide weight by 4 and multiply cost by 5 at TL8. Survival modifier: +3. $100, 15 lbs. LC4.

Blanket, Emergency (TL7). A fragile, metallized “space blanket” that reflects heat back toward the sleeper while repelling rain and wind. Survival modifier: -1. $5, 0.25 lb. LC4.

Tent, Dome (TL8). A modern, waterproof, expeditiongrade tent for four men. It can withstand wind speeds beyond 50 mph. It takes about a minute to set up. A two-man version is half cost and 1/3 weight. Survival modifier: +2. $150, 12 lbs. LC4.

Tent, Personal (TL8). A bivouac (“bivy”) tent just large enough for one person. It’s water- and windproof, and sets up in about a minute. Survival modifier: +1. $100, 1 lb. LC4.

Cooking Gear (TL5)

When cooking in the wild, use the Survival skill to prepare an edible meal, the Cooking skill to produce more sumptuous cuisine.

Field Kitchen (TL5). A kitchen for 20 men, including serving and preparation utensils, stowed in a wooden box. $600, 80 lbs. LC4.

Hobo Knife (TL5). A pocket-sized jackknife with knife, fork, and spoon. When unfolded, it splits into two separate sections that can be used individually: a knife and a fork/spoon. A favorite of Union troops and Boy Scouts. $5, 0.25 lb. LC4.

Camp Stove (TL6). A portable cook stove suitable for an individual or a small group. It’s often called a “primus” in honor of the popular Primus brand of stoves, first sold in 1892; explorers and adventurers have used similar stoves ever since. Most can boil a quart of water in 4 minutes or less. The original stoves generally used gasoline or kerosene, burning a 1-pint tank dry in two hours. Many makers switched to propane at TL7 (a 1-lb. cylinder lasts for about an hour and costs $5). The newest TL8 stoves have piezoelectric ignition and titanium bodies (¥3 cost, ¥1/3 weight). $40, 1 lb. LC4.

Sea Kettle (TL6). A 2-quart “chimney kettle” or “jacket boiler.” Heat from a fire built in the base of kettle escapes out the chimney, heating up water stored in the jacket. This very efficiently brings the water to a boil; only a handful of twigs or a sheet or two of newspaper is necessary to boil 2 quarts of water in a couple of minutes. A rack fits over the mouth of the chimney for cooking a small meal. $75, 2 lbs. LC4.

Cooler (TL7). Coleman sold their first cooler in 1954. This example is capable of holding 16 cubic feet. It uses 25 lbs. of ice in three days in temperate conditions. At TL8, it uses external power to control the temperature thermoelectrically, from 40°F to 120°F. $150, 25 lbs. LC4.

Fuel Tablets (TL7). Many armies issued flammable fuel tablets during WWII; soldiers burned them to prepare a cup of coffee, tea, or soup. Each waterproof tablet burns for 15 minutes and can boil a quart of water in 5 minutes. A pack of 30: $10, 1 lb. LC4.

Group Mess Kit (TL7). A lightweight kit for four, with frying pan, bowl, and pot. At TL8, a titanium version is ¥4 cost but ¥1/3 weight. $30, 5 lbs. LC4.

Personal Mess Kit (TL7). A small cooking kit for one: small cook pot, can opener, fork, knife, cup, and spoon. At TL8, a titanium version is ¥3 cost, but weight is a mere 0.3 lb. $15, 1 lb. LC4.

Solar Stove (TL7). In clear conditions, a solar stove can cook a meal in about the same amount of time as a fire. This commercial model includes an airtight cooking box, a temperature gauge, and a polished mirror to focus sunlight on the food. $250, 20 lbs., LC4.

Alcohol Pocket Stove (TL8). A tiny stove favored by backpackers, it can be made with a pocketknife and a couple of discarded soda cans in about 15 minutes. It can boil a quart of water in less than 10 minutes using an ounce of alcohol. A store-bought model is $20, neg. LC4.

Meal Heaters (TL8). Just add water and place a military ration (p. 35) inside the pouch. The flameless chemical reaction reaches nearly 180°F, and cooks the meal in minutes. Per dozen: $5, 1 lb. LC4.

Fire Starters (TL5)

Building a fire with natural materials requires a DX-based Survival roll. Most of the items below give +5 to +10 to this task. Thus, the GM should only require a roll in extraordinary circumstances – wet weather, high winds, etc.

Flint and Steel (TL5). Flint and steel can make a fire in less than 30 seconds in ideal conditions. Specially prepared “char-cloth,” made by cooking scraps of cloth inside a tin, will catch a spark even in windy conditions. $5, neg. LC4.

Magnifying Glass (TL5). A small lens can easily start a fire on a sunny day. Such “burning glasses” were common firestarting tools during the Napoleonic period. $10, neg. LC4.

Matches (TL5). The first successful strike-anywhere friction matches – called “lucifers” – became available around 1830. Paper matchbooks are a TL6 invention, from the 1890s. Varnished, waterproof matches that will light even when wet are also TL6. A box of 50 matches is $0.25, neg. LC4.

Musket (TL5). With a black-powder firearm, fire is always as close at hand – just fire a blank charge into a pile of tinder. If the gun is loaded and/or the sound would draw unwanted attention, stick a twig in the touchhole, put charcloth and tinder in the flashpan, and catch a spark from the flint.

Cigarette Lighter (TL6). The famous Zippo was invented in 1932, but it was based on earlier designs, including WWI trench lighters. A lighter is good for several hundred lights and has a continuous burn time of about 20-30 minutes. At TL8, triple cost buys a windproof, waterproof model. $10, neg. LC4.

Fire-Starter Paste (TL6). A highly flammable substance used for lighting wet kindling in arctic conditions. A tube is enough for 20 fires. $5, 0.25 lb. LC4.

Solar Reflector (TL7). A pocket-sized parabolic reflector, which when aimed at the sun on a clear day will cause tinder to catch fire. An hour’s work polishing the bottom of a soda can with a mild abrasive (toothpaste or chocolate works fine) will create a perfectly functional solar reflector. A commercial stainless-steel version is $10, neg. LC4.

Fishing and Trapping Kit (TL5)

A fisherman or trapper can make up to five Fishing or Survival rolls per day for food; see Foraging (p. B427).

Fishing Kit (TL5). A few hooks and sinkers, and a length of fishing line. Basic equipment for Fishing, and often found in survival kits (pp. 58-59). $5, neg. LC4.

Traps (TL5). Spring-powered “bear trap” devices, staked to the ground with a chain, give +1 (quality) to Survival. They have a rated ST, and inflict thr+2 crushing damage for that ST. Victims roll against this ST during attempts to break free (p. B371). The two most common sizes are the beaver trap (ST 8, $20, 2.5 lbs.) and a monster-sized version for large predators (ST 15, $75, 35 lbs.). LC3.

Fishing Outfit (TL6). A pole with reel, plus a toolbox with an assortment of jigs and lures. Gives +2 (quality) to Fishing. $200, 10 lbs. LC4.

Snare (TL6). A steel wire snare is a common survival-kit item. It’s basic Survival equipment for trapping small game. $1, neg. LC4.

Rescue Signaling Devices (TL5)

When it isn’t enough merely to survive, equipment beyond the tried-and-true signal fire can help signal rescuers. Except for the whistle, all of the items below grant at least +2 to Vision rolls made by a rescuer to spot the signaler, as long as there’s a line of sight.

Whistle (TL5). Detected on an unmodified Hearing roll at 128 yards. $5, neg. LC4.

Hand Flare (TL6). A brightly burning road flare that can easily set fires. Lasts about 30 minutes. Illuminates a 5-yard radius. $5, 1 lb. LC4.

Signal Mirror (TL6). A signal mirror has a hole in the center for sighting on aircraft or ships. Under optimum conditions, it can generate 8 million candlepower and be seen over 50 miles away. At TL7+, it’s made of silvered plastic to avoid breakage. $5, neg. LC4.

Pen Flare (TL7). A disposable, pen-sized launcher, often found on the sleeve of military flight suits. Shoots a colored signal flare to 70 yards. $15, 0.1 lb. LC4.

Strobe Marker (TL7). A palm-sized flashing light, visible up to 2 miles away. At TL8, a military-grade model acts as flashlight and has snap-on filter for infrared-only signaling (¥5 cost). $25, 0.25 lb., XS/8 hrs. LC4.

Laser Rescue Flare (TL8). A powerful laser that can be seen by aircraft up to 10 miles away. The user aims it at the aircraft cockpit. $50, 0.1 lb., T/week. LC4.

Survival Kits (TL5)

Survival kits are optimized for the environment in which they’ll most likely be used. This normally corresponds to one of the Survival specialties described on p. B224. The two basic categories are land and aquatic; kits intended for one give -3 to Survival when used for the other. A kit from a different specialty within the same category gives -1 to skill if the specialties are similar (e.g., an arctic kit in a mountain environment), -2 if they’re very different (e.g., a desert kit when you need a jungle kit). A kit for Urban Survival (p. B228) is possible; it falls into its own category, giving -3 if used in place of any conventional kit, or vice versa.

It’s difficult to generalize about what’s “essential,” since that’s situational, but experts list these basic requirements:

If the kit doesn’t cover one of these areas, or if a class of gear is lost or used up, assess the -1 for “missing important items” (see Equipment Modifiers, p. B345). As the kit is depleted, it degrades to the level of improvised equipment at best. Good- and fine-quality kits are bigger because they include several items of each type, giving the survivor a backup in case something is lost or malfunctions. The best kits contain items that can’t be used up or that work on wholly different principles (flint and steel, waterproof matches, and fire-starting paste).

Personal Rescue Beacon (TL7)

This is a radio beacon (p. 210) the size of a cigarette pack. It’s tied into a global satellite network so that when the beacon is activated, rescue teams are notified. At TL7, the beacon is located via radio direction finders mounted in rescue vehicles, and it might take rescuers 6 hours or more to get a fix. At TL8, location is determined from GPS data broadcast by the beacon – which is much more reliable – and the time from activation to an alert at a rescue center is a mere 3-10 minutes. $1,000, 0.75 lb., S/24 hrs. LC4.

Personal Basics (TL5)

This is basic equipment for a particular Survival skill specialty – the minimum that each person needs during a life-threatening situation in a specific environment. In all cases, it includes a knife of some sort, a light source and/or a fire starter, and some means to procure food and clean water. The specifics vary depending on the hardware available at the tech level (flint and steel instead of a lighter, cell phone in place of a signal mirror, etc.) and on the intended environment (money is much more useful than a fishing kit in an Urban Survival situation!). This gear alone might weigh 0.5 lb. or less.

However, many items might appear in a given adventurer’s personal basics; e.g., cord, duct tape, eating utensils, first aid kit, hip flask, notebook, towel, and water bottle. Prescription medicines and a spare pair of contacts or glasses (p. 225), are also a good idea.

In general, total cost is around 1% of the monthly cost of living, and overall weight is about 1 lb.

Covert Survival Kit (TL7)

The ultimate in “minimalist,” this is basic woodland survival gear concealed in the lining of a belt: compass, empty 1-quart plastic water bag, fishing kit, matches, micro-flashlight, multi-function knife, notebook, sewing kit, signal mirror, snare, water purification tablets, wire saw, and a few feet each of cord and duct tape. $100, 0.5 lb. LC4.

Pilot’s Survival Vest (TL7)

A jungle survival kit contained on a load-bearing vest, this gives a +1 (quality) to Survival (Jungle). It includes: cigarette lighter, compass, emergency blanket, empty 1-quart plastic water bag, fishing kit, insect repellant, magnifying glass, matches, multi-function knife, pen flare, signal mirror, small first aid kit, snares, strobe marker, sunscreen, water purification tablets, whistle, and two snacks. In addition to all this, military versions add a handgun and ammunition – and most pilots add a larger knife and either a small radio or a personal rescue beacon. The civilian version is $250, 5 lbs. LC4.

Water-Processing Equipment (TL6)

The first priority in a long-term survival situation is to find a reliable water source. Leaving water in a clear, closed container on a reflective surface in the sun for six hours will kill any bacteria in it (a process called “solar water disinfection” or “SODIS”). Boiling water for 20 minutes also works. There are other ways to obtain potable water, however.

Chemical Desalter Kit (TL6). Standard equipment aboard life rafts and aircraft is a small box with eight bars of desalting chemical and a plastic bag. Each bar is dropped into a seawater-filled bag. Five minutes later, a quart of water is ready to drink. $25, 0.5 lb. LC4.

Water Filter (TL6). A water filter works by pushing water through some kind of filter medium (paper, charcoal, etc.). This gives a bonus equal to (TL-2) to HT rolls when drinking bacteria-ridden water (see Contagion, p. B443) but doesn’t remove salt – for that, use a desalinator (below). It takes a minute to filter a quart of water. At TL8, divide weight by 8. $100, 8 lbs. LC4.

Water Purification Tablets (TL6). A tiny amount of chlorine or iodine can kill most bacteria in a water supply in about 30 minutes. The taste leaves a lot to be desired, but it is safe. A bottle of 50 tablets: $5, neg. LC4.

Solar Water Still (TL7). A plastic bag or a rubber bladder used to distill potable water from almost anything with water in it – cactus pulp, kelp, seawater, etc. The still works by evaporation, using the power of the sun. It produces up to a quart of potable water a day. Make a Survival roll to use it and gather the water. $30, 2 lbs. LC4.

Hand-Pumped Desalinator (TL8). This is modern lifeboat equipment. The pump filters a cup of water for every 10 minutes of pumping (costs 1 FP). A larger model (¥3 cost and weight) produces a quart of water for the same effort. The filter lasts for 15,000 gallons. $500, 2.5 lbs. LC4.

MIOX Water Purifier (TL8). This pen-sized gadget uses an electrolytic process to create a chemical “cocktail” of mixed oxidants (MIOX) that safely eliminates microbiological contamination in water. The battery-powered device uses table salt to produce a salty liquid that’s left mixed with drinking water for 15 minutes to four hours, depending on the water’s condition. After that, the water is safe to drink. $100, 0.25 lb., S/200 quarts. LC4.

UV Purifier (TL8). A UV light source inside a special one-quart container. Water exposed to the UV light for 1-2 minutes is safe from microbiological contamination. $100, 2.5 lbs. (full), 4¥XS/20 quarts. LC4.

Comforts (TL7)

A few comforts from home are always welcome on the trail!

Camp Shower (TL7). A one-gallon shower bag. An hour of direct sunlight can heat it to over 90°F. $20, 2 lbs. LC4.

Chemical Toilet (TL7). A plastic bucket with seat. Kills bacteria and odors. $30, 7 lbs. LC4.

Clothes Washer (TL8). A hand-cranked washer that cleans up to 5 lbs of clothes in 2 minutes. $50, 4 lbs. LC4.

Espresso Maker (TL8). Prepares one serving in about 3 minutes. $10, 2 lbs. LC4.

MARITIME GEAR

The sea is a cruel mistress. It pays to enter her domain well-prepared.

Life Jackets (TL5)

The life jacket is the essential maritime life-saving device. The earliest models date to 1850s Britain, and were made from huge blocks of cork sewn into a canvas vest. Any life jacket gives +6 to Swimming rolls to avoid drowning (p. B354) but -3 in Quick Contests of Swimming when racing (see Swimming, p. B224).

Life Jacket (TL5). At TL5, cork-block construction gives -3 to Swimming rolls to avoid injury when first entering the water. At TL6-8, better materials eliminate this problem and weigh half as much. $10, 5 lbs. LC4. Flotation Belt (TL6). A heavy webbing belt with two rubber tubes inside. It was issued by the thousands during WWII. When activated, two CO2 cylinders inflate the belt. $15, 2 lbs. LC4.

Flotation Vest (TL8). A concealable life jacket – often incorporated into a load-bearing vest (p. 54). It can be manually activated or set to inflate automatically on entering the water. Its self-righting design will keep even an unconscious person’s head out of the water. $150, 3 lbs. LC4.

Skin-Diving Equipment (TL6)

Modern skin diving got its start in the 1920s, when Guy Gilpatric began using aviation goggles while spearing fish in the French Riviera. The standard equipment we know today soon followed.

Dive Mask (TL6). See Goggles.

Snorkel (TL6). This modern snorkel with a rubber mouthpiece lets a swimmer keep his face in the water while swimming on the surface. $25, 1 lb. LC4.

Swim Fins (TL6). Although Benjamin Franklin fiddled with an early prototype, modern swim fins were custommade for divers during the 1930s. Commercial models appeared in 1940. Each fin requires a Ready maneuver to don or remove. They provide Enhanced Move 0.5 (Water) but reduce Move to 2 on land. $25, 3 lbs. LC4.

Miscellaneous Maritime Gear (TL7)

These items provide an extra degree of safety for those on the open water.

Dive Cage (TL7). A divers’ shelter for shark-infested waters. It has space for up to three men. A buoyancycontrol device allows use on or below the surface. DR 20. $3,000, 600 lbs. LC4.

Dye Marker (TL7). A container of fluorescent dye. Released in water, it takes 3d seconds to make a luminous circle 30’ in diameter, which gives +2 to Vision rolls to see it. It lasts for about half an hour in normal sea conditions. $5, 0.5 lb. LC4.

Life Raft (TL7). A round, high-visibility, self-inflating raft for one in a soda can-sized package – with weather canopy, sea anchor, etc. A larger, four-person model is also available (¥3 weight and cost). $50, 5 lbs. LC4.

Emergency Beacon (TL8). This wrist-worn, short-range radio beacon triggers automatically if submerged and can also be activated manually. It is part of the “man-overboard system” common on yachts and commercial fishing boats. When activated, an alarm sounds aboard the vessel and a shipboard radio direction finder (pp. 38-39) indicates distance and direction to the beacon. Each locator can be assigned a coded ID so that it reveals the survivor’s identity as well. $300, 0.25 lb., XS/8 hrs. LC4.

Rebreathers (TL7)

Diving rebreathers actually predate conventional scuba gear and were first used as submarine escape equipment. Since they recirculate the diver’s exhaled gases instead of exhausting them, they draw much less attention on the surface – a useful trait for military divers. For details, see Rebreathers (p. 76).

Scuba Gear (TL7)

French naval officer Jacques-Yves Cousteau and Air Liquide engineer Emile Gagnan produced a working model of the “aqua-lung” in 1943. Models reached the U.S. in 1948. By 1958, over 25,000 had been sold – thanks in no small part to the TV adventure series Sea Hunt.

A scuba (self-contained underwater breathing apparatus) setup is an “open-circuit” breathing system – it releases the diver’s exhaled breaths into the water. Such gear is wasteful of air but simple to operate compared to a “closedcircuit” rebreather (p. 76). Its biggest limitation is that it’s restricted to relatively shallow dive depths.

Micro-Scuba Rig (TL7). A complete breathing rig with mouthpiece, regulator, etc., used as a backup by divers if their main system malfunctions. It provides air for 30-60 breaths; see Holding Your Breath (p. B351). Holdout -3. $200, 2 lbs. LC4.

Scuba Gear (TL7). A comprehensive set of scuba-diving equipment: wetsuit, dive mask, snorkel, fins, buoyancy compensator, medium air tank, regulator, weight belt, and so on. See Chapter 4 for details on air tanks and scuba masks. $1,500, 45 lbs. LC4.

PARACHUTING GEAR

In 1797, André Garnerin leapt out of a hydrogen balloon 3,200’ above Paris . . . and survived, courtesy of his invention, the first practical parachute. Interest in this technology grew enormously with the development of powered flight in TL6.

The first widespread use of parachutes was during WWI – initially as an escape device for balloonists, and later for pilots and even spies. In the 1920s, the Soviets conducted the first military exercises with parachute infantry, proving that a force could be landed behind enemy lines. Whole armies of parachutists were organized during WWII. Many countries maintain “airborne” units today; 100 U.S. Army Rangers parachuted into Afghanistan in 2001, and 1,000 airborne troops landed on a single airfield in Iraq in 2003. Parachutes aren’t exclusively safety gear and military kit. The civilian sport of skydiving blossomed in the ’60s and ’70s, thanks to safer parachutes and better training. All types of parachutes and parachuting use the Parachuting skill (p. B212).

Parachutes (TL5)

A parachutist must make a Parachuting roll to use his equipment correctly on a jump. After pulling the ripcord on his parachute, he’ll fall a minimum of 80 yards before the canopy opens completely. Should he hit the ground before then, assume that he has half the usual velocity for the fall. Once his chute is entirely open, he falls at 5 yards per second (variables include canopy size, parachutist weight, thermals, etc.), and drifts with the wind. Add 1 yard per second to landing speed per 50 lbs. over the parachute’s maximum rated weight. A chute carrying 120% or more of its rated weight simply fails. Ram-air devices differ in several ways (see below).

Beginning at TL8, most parachutes are equipped with an automatic barometric actuating device that deploys the canopy at a preset altitude – usually 1,000’. This safety feature prevents an unconscious jumper from plummeting to his death. Of course, it can malfunction or be intentionally deactivated (or sabotaged!). It takes 10 seconds to put on a parachute, 2 seconds to take it off.

Parachute (TL5). The earliest experimental parachutes had no hole in the top to allow air to escape, so they oscillated ferociously. Parachutists jumping with these poorly designed parachutes must make a HT-4 roll to avoid becoming nauseated (p. B428). Maximum suspended weight is 150 lbs. $500, 50 lbs. LC4.

Parachute (TL6). One of the first commercial parachutes was the Guardian Angel, sold in England from 1917. This is a standard round parachute opened by a static line or by hand. It isn’t controllable and thus relies on the jumpmaster and the aircraft pilot for accuracy in hitting the drop zone. The current U.S. Army T-10 is very similar. Maximum suspended weight is 150 lbs. (200 lbs. at TL7, 250 lbs. at TL8). A reserve chute adds $250, 15 lbs. $750, 30 lbs. LC4.

Mini-Parachute (TL8). A parachute in a slim backpack that can be concealed under a jacket (¥5 cost) with ripaway back panels. One model is marketed as a high-rise building escape device. It opens in half the distance of a normal chute. $1,000, 8 lbs. LC4. Parachute Navigation Device (TL8). This gadget combines GPS (p. 53) and a helmet-mounted HUD to project a directional arrow that guides the parachutist to his landing zone. Military models are designed to work with nightvision goggles. $1,500, 1 lb., XS/20 hrs. LC3.

Ram-Air Parachute (TL8). At TL8, sport jumpers and high-altitude military parachutists favor airfoil-style parachutes. Such a chute is highly maneuverable. It can glide at Move 15 relative to the ground – and with a good tailwind at 20,000’, jumpers routinely cruise as fast as Move 35, flying dozens of miles under canopy in the right conditions. This allows black-ops teams to exit an aircraft at great altitude and fly in formation to a distant drop zone. Jumpers attempting such stunts require an air mask (pp. 72-73) and air tanks (p. 74) to avoid passing out due to lack of oxygen; see Atmospheric Pressure (p. B429). Maximum suspended weight is 400 lbs. For performance data as vehicle, see the Air Conveyances Table (p. 232). With reserve: $3,500, 25 lbs. LC4.

Aerial Resupply (TL6)

Sometimes, the only way to get equipment to people on the ground – be they smokejumpers, scientists in Antarctica, or troops in an area too hot for a helicopter landing – is to deliver it from the sky.

Parachute Container (TL6). A typical WWII-era cargo container, this packet holds 250 lbs., or 5 cubic feet, of gear. With parachute deployed, it descends at 6 yards per second, drifting with the wind. Military chutes are often colorcoded (blue for mail, green for ammunition, red for medical supplies, etc.). $50, 25 lbs. LC4.

Guided Parachute Delivery (TL8). Using GPS (p. 53) to guide the parachute via a strap-on control pack and a set of control arms that look like shock absorbers, a GPD can deliver cargo (like a parachute container, above) to preset coordinates. Such a system – like the U.S. military’s Joint Precision Airdrop System (JPADS), used in Afghanistan and the Iraq War – can steer itself to within a few dozen yards of the programmed landing point. It cruises at Move 10-15 relative to the ground. Maximum cargo load is 5 tons. $70,000, 50 lbs. LC3.

Infiltration Pod (TL8). This is a streamlined human cargo pod, like the EXINT (extraction/insertion) pod from London-based AVPRO. It holds one person and attaches to an aircraft’s hardpoints; a single AH-64 Apache helicopter can carry four. The occupant has a radio, a navigation display, and life support – but no controls! A GPS-guided control system steers the pod precisely and lands it safely using a combination of parachute and airbags. Maximum cargo load, including occupant, is 500 lbs. $100,000, 700 lbs. LC3.

Death from Above

A parachutist may need to dispatch an unwanted welcoming committee as he nears the ground. This requires a Move and Attack maneuver, with a penalty equal to the weapon’s Bulk or -2 (whichever is worse). Roll against the lower of Parachuting or ranged weapon skill to hit. Paratroopers who often find themselves in this predicament might benefit from the Mounted Shooting technique (p. 251).