An alarm is any device that emits a noise to announce the presence of intruders.
Described under Semi-Portable Housing Elements (p. 32). When someone moves through the curtain, the beads make noise, alerting the occupants. Negotiating a beaded curtain quietly requires a Stealth roll at -2.
This is a noisemaker activated by a tripwire (above). Examples include bells, gongs, and drums. The easiest way to neutralize this alarm is to avoid the tripwire, but it may also be disarmed (see Traps, p. 122).
This is a purpose-built squeaky floor. It has moving floorboards nailed in such a way that whenever somebody walks on them, the nails scratch along small metal plates. Some Japanese castles used these as alarms against intruders. Make a Traps or Carpentry roll to notice a nightingale floor. Bypassing it involves jumping over it or climbing along the rafters. A ladder or long board laid over the entire floor can spread your weight enough to keep the floor from singing. Fixing boards with nails or gum may also work; make a Traps roll to disable the floor this way. Sometimes, an intruder might encounter a single squeaky floorboard. He’ll randomly step on this on a roll of 1-3 on 1d, unless the GM rules otherwise. Make a Carpentry roll to notice a floorboard that might squeak, at -4 if the floor is covered with a carpet or mat. Sprinkling talcum powder between floorboards can often lubricate them enough to prevent squeaking.
Identification of people and authentication of messages are important for the security of property and information. The GM should roll a Quick Contest whenever a person who isn’t supposed to be somewhere tries to sneak past a guard (or observant worker!). The intruder must win to pass. If trying to pose as someone innocuous, he rolls Acting or Disguise vs. the sentinel’s Body Language or Observation. If he’s challenged, this shifts to Acting vs. Detect Lies. If he’s actively attempting to con his way past, that’s Fast-Talk vs. Detect Lies – or perhaps Sex Appeal vs. Will. And if he’s bearing a fake document or seal, see Forgery and Counterfeiting (p. 128).
Almost every historical culture has placed identifying marks on people and beasts. Such markings come in two major varieties:
Brands: Scars created via patterned cuts or searing metal (1 point of burning damage on application). The earliest such marks identified the ownership of domestic animals, and advertised the Social Stigmas of individuals such as convicted criminals and slaves.
Tattoos: Patterns created by cutting the flesh and marking the resulting wound with a coloring agent. Decorative tattooing requires Artist (Body Art); crude examples are often done at default.
A roll against a suitable specialty of Heraldry (p. B199) may be needed to identify marks that encode subtle meaning, such as a specific owner, clan affiliation, religious order, or crime. Sample specialties include Cattle Brands (defaults to Farming-3) and Punishment Marks (defaults to Criminology- 3). While body marks are usually LC4, people with the brands or tattoos of outlawed groups may be arrested or even killed if their marks are detected.
These perform a function similar to brands and tattoos (above), except that the body itself is altered. Examples include Jewish circumcision, the Christian tonsure, Chinese foot-binding, and Mayan skull-binding.
An easy way to verify someone’s identity is with a prearranged password. Recalling a simple challenge-response code is automatic. If the player forgets a complicated coded phrase, though, the GM is free to require an IQ roll to remember it, with Eidetic Memory giving +5.
Linguistic Riddles: Some watchwords rely on having Native spoken comprehension in a language. When the Hebrews were at war with people whose native language didn’t include the “sh” sound, their soldiers asked strangers to say the word “shibboleth.” In 1282, during the Sicilian Vespers massacre, the Italians used the word “cicera” to identify the French, who had difficulty pronouncing it.
An invoice is a commercial document issued by a seller to a buyer. It lists purchased items alongside quantity and price. When the agreed amount is paid, the seller issues a receipt to prove transfer of ownership to the buyer.
Invoices can be used to establish identity – if you can show invoices for goods you possess, challengers may assume that you’re the person to whom the documents were issued. Altering or falsifying an invoice or a receipt requires a roll against the lower of Merchant and Forgery. To detect a fake, roll a Quick Contest: Perception, Forensics, or Merchant vs. the skill used to create the forgery.
Seals and signet rings (see Hard Solid Media, p. 46) are used to secure documents with wax or clay. The message is folded and sealed, after which opening and reading it means breaking the seal. In European society, this procedure was most often used to authenticate deeds and charters. Similar measures work for containers such as ceramic jars (see Containers and Storage, p. 34) – the vessel is closed or covered, and a seal stamped into a piece of clay that must be broken to open it. If someone wants to read a sealed message or inspect a sealed container without anyone knowing, he must reapply the seal using the same sealing material, and have an identical copy of the stamp; see Forgery and Counterfeiting (p. 128).
A signet ring can also serve as a personal identity token. The bearer is immediately identified as the holder of a particular office or title.
A well-designed security system combines several layers of identity verification with multiple intrusion-detection measures in order to deter and/or detect would-be thieves and spies. Security is a comfort-dependent technology, though – people put up with it as long as it doesn’t cause too much inconvenience. Even security personnel will ignore a device that causes frequent false alarms, malfunctions regularly, or is otherwise fussy. As well, while security equipment is designed to minimize or eliminate “false positives,” sensitive gear is bound to detect things that aren’t threats; e.g., a metal detector will sense a wristwatch or a fountain pen as easily as it will find a knife or a handgun. Crafty operatives can exploit these flaws, using “human engineering” to ensure that security systems are ignored or even shut off in the highest-security areas (“Aw, that’s just the south door alarm going off again. Third time today, as a matter of fact. Don’t worry about it. Hand me another egg roll…”).
The first rule of security is access control: separating the authorized from the unauthorized to make intruders easier to find. Locks (p. 203) at TL5+ and electronic locks (p. 204) at TL6+ are effective means of access control. So is a guard! At TL8, electronic locks capable of identify verification appear. Someone with suitable tools and unobserved access to such a device can crack open its case and bypass it with an Electronics Operation (Security) roll, at +5 for a basic system (x1 cost), no modifier for a good system (x5 cost), or -5 for a fine system (x20 cost).
This scans the subject’s fingerprint or hand geometry. Basic versions are easy to fool: breathing heavily on the scanner causes the machine to read the last print scanned – which, if authorized, grants admission! Tricking higher-quality scanners is difficult but not impossible. $200, 1 lb., external power. LC4.
A retinal scanner uses a low-powered laser to identify the subject’s unique retinal pattern. Surgery and special contact lenses are ineffective in reality, but might work in cinematic campaigns. $500, 2 lbs., external power. LC4.
This device senses timing and pressure as the user signs his name on a pressure-sensitive plate. It can see through simple forgery attempts, but someone with the Electronics Operation (Security) skill and a computer analysis of an authorized signature may attempt a Forgery roll at -3. $200, 2 lbs., external power. LC4.
A voiceprint analyzer matches the subject’s voice to an audio record (usually a short phrase such as a name or an ID number). A good digital recording of the phrase will easily bypass the system; a voice modulator (p. 212) can also fool it. $100, 0.5 lb., external power. LC4.
These systems detect unauthorized activity and notify the authorities via local and/or remote alarms. Responses vary. Residential security services often dispatch their own personnel and call the police; military setups alert armed troops. Make a Vision-5, Observation, or Per-based Traps roll to spot an intrusion-detection system. If it’s concealed, this becomes a Quick Contest against Camouflage skill, and discovery may be impossible without suitable sensors (e.g., a thermograph to see the heat in the wiring). Make an Electronics Operation (Security) or Traps roll to identify any hardware found.
Defeating the system may require one or more skill rolls. See below for some possible approaches. The GM decides what strategies are effective against a given setup. In all cases, thwarting a mechanical device or a simple circuit calls for a Traps roll, while anything more sophisticated requires an Electronics Operation (Security) roll. Any failure sets off the alarm. The GM should roll in secret; even if the alarm involves a loud siren, the intruders needn’t know until they trip it!
One possible way to disarm a system is to gain access to the controls and shut it down. This still demands a skill roll. Nearly all setups require codes, keys, and/or supervisor permission to deactivate without arousing suspicion.
If a security device is accessible, a skill roll can open and disable it. However, most hardware is wired to detect tampering. The GM should require a separate skill roll to open the housing without triggering the alarm.
In the movies, heroes routinely destroy security devices – often with pistol fire. This shouldn’t work in a realistic game. Good-quality systems are rugged enough to resist handgun rounds (DR 12+). Shooting them counts as tampering and tends to alert anyone nearby!
Since most systems draw external power from the building in which they’re installed, cutting the power might seem logical. Modern devices inevitably have battery backups, though; some have one per sensor, just in case. These can often provide power for hours, even days.
In the final analysis, the safest way to defeat any system is to have someone on the inside!
An intrusion-detection system may include any of the elements below – and possibly a laser fence (p. 204), proximity fence (p. 205), microwave fence (p. 205), and/or smart fence (p. 205). To work as a system rather than as a set of components, it requires monitoring equipment or software, which costs $1,000 or more (GM’s discretion). At TL6-7, monitoring equipment consists of bells, claxons, and/or blinking lights. At TL8, devices are often connected to a computer with powerful monitoring software, which might call a whole list of people via radio and cell phone, leave messages, send e-mail, notify emergency services, etc.
These are simple switches and latches that activate an alarm when tripped. They’re common on windows and doors, often alongside locks (p. 203), electronic locks (p. 204), or identity verification (p. 205). At TL6-7 they’re connected by wire to a monitoring box. At TL8, they can communicate via a wireless network. Per portal: $200, neg., external power. LC4.
Capacitance proximity sensors detect minute changes in an electric field – such as those caused by an approaching intruder. Touch-sensitive consumer products, like lamps, use similar sensors at TL8. Typically concealed, proximity detectors are connected directly to a high-value object: technological prototype, sculpture, frame of a painting, etc. Touching the rigged item triggers the alarm. Per item: $40, neg., external power. LC4.
This sensor detects motion up to 25 yards away and is often combined with directional lights. $100, 1 lb., external power. LC4.
This buried vibration sensor can discriminate between people, vehicles, and geological phenomena. Its detection radius is five yards. By making a Stealth roll at -4, an intruder who’s aware of the device can cross the protected zone at Move 1 without being detected. $50,000, 50 lbs., external power. LC3.
Visitors to restricted areas are often scanned for threats during or after identity verification. A screening system’s operator must make an Electronics Operation (Security) roll to claim any bonuses his hardware grants.
A handheld metal detector of the type used by security guards and police at concerts, public gatherings, and so on gives +1 on Explosives (EOD), Search, and Traps rolls to detect metallic objects: guns, knives, mines, bombs, etc. Combined with a one-minute pat-down, the Search bonus becomes +2. Clothing designed to conceal items (see Undercover Clothing, p. 64) is ineffective against a detector-assisted search!
Handheld Metal Detector (TL7). $500, 1 lb., S/10 hrs. LC4.
Handheld Metal Detector (TL8). $250, 1 lb., S/10 hrs. LC4.
A security camera doesn’t provide much protection; it simply records the crime. The recording is all but useless if the perpetrator wears a mask or hides his face and distinguishing characteristics successfully. Still, many people feel safer with cameras around.
The statistics below assume a basic, stationary color video camera – the most common variety. Triple cost and weight for a “PZT” model that can pan, tilt, and zoom when controlled from a remote workstation. Add $100 to final cost for a wireless camera with a half-mile range.
Video Surveillance Camera (TL7). $150, 2 lbs., external power. LC3.
Video Surveillance Camera (TL8). $150, 1 lb., external power. LC3.
A walkthrough metal detector is a large portal for screening people entering airports, museums, and the like. The operator can adjust its sensitivity to get from +1 to +3 to Search in Quick Contests against Holdout. The higher sensitivity levels are unsuitable for use in high-traffic areas, though – an alert almost always leads to a pat-down (usually with a handheld detector, see above), so higher sensitivities mean longer lines filled with grumpier people.
Walkthrough Metal Detector (TL7). $10,000, 100 lbs., external power. LC4.
Walkthrough Metal Detector (TL8). $5,000, 50 lbs., external power. LC4.
These X-ray machines are designed to scan luggage or packages carried on a conveyor belt. They give +3 to Search to detect weapons, contraband, and the like. At TL8, they provide color-coded images: organic material appears brown or bright orange, metal is light green to dark blue, etc. This gives a further +1 to Search to detect metallic weapons, detonators, and explosives.
Carry-On Baggage Screener (TL7). $50,000, 1,000 lbs., external power. LC3.
Hold Baggage Screener (TL7). $100,000, 1 ton, external power. LC3.
Pallet or Cargo Container Screener (TL7). $200,000, 3 tons, external power. LC3.
At TL8, specially designed CT scanners (see CT and MRI Scanners, p. 223) are the primary means of screening hold baggage at the world’s major airports. They’re the only alternative to a manual search authorized by the U.S. Transportation Security Administration. A CT scanner generates a 3D model of the baggage based on the density of its contents. It’s the “best equipment possible” for Search at TL8, giving +4 (quality) for all searches and +6 (quality) to find explosives. $2,000,000, 6 tons, external power. LC3.
This “radar camera” detects the radiation emitted by all objects – including people – and can see through clothing, foliage, packaging, and thin walls. A guard can use it to spot weapons and other contraband by watching people as they approach or move through a checkpoint. It provides Imaging Radar (p. B81) with a 10-yard range. $100,000, 50 lbs., external power. LC3.
This software compares a subject’s face or gait to a database, alerting security staff if that person isn’t on a list of authorized personnel – or is on a “watch list.” Effectiveness is hotly debated. A conservative approach would treat it as a guard with an effective Perception roll of 14 for recognition purposes; a more generous approach would give it Per 18+. The Disguise and Acting skills can fool optical recognition software about as easily as they would a guard. The software requires video surveillance cameras (p. 206) for input and can monitor up to 10 cameras simultaneously. Complexity 5. $10,000. LC3.
This system swiftly triangulates the origin of a gunshot. Its omnidirectional microphones detect the shockwaves generated as the bullet travels through the air. Using this sensor data, and a location package that includes a GPS receiver (p. 53) and a compass, the computer at the system’s heart calculates the bullet’s speed, distance, trajectory, and caliber – and, most important, the firer’s location – all within a second.
The system is extremely accurate; its margin of error is smaller than 10%. It can determine caliber and range, and fix direction to within 20°. Roll at 10 plus the total Hearing modifier for the weapon’s type, ammunition, distance, suppressor, etc., to see if it can locate the shooter. For more on detecting gunshots, see Sound Suppressors (pp. 158-159). $10,000, 30 lbs., M/10 hrs. LC3.
Military and intelligence operatives – and skilled cinematic hackers – may get the opportunity to scope out the opposition using “intelligence assets” such as spy satellites and surveillance drones. Civilian experts use lower-resolution satellites to plan urban growth, watch the weather, and study climate change.
The best-known spy satellites are imagery satellites, which use cameras and other sensors to render an image. At TL7, resolution of the traditional spy-satellite camera is about a yard, meaning it could clearly see a semi-truck, mobile missile launcher, house, or research lab… but not a car or a person.
At TL8, the sharpest “eye in the sky” might resolve pixels of 4”-6” – a softball-sized target. That still isn’t good enough to read the proverbial newspaper from orbit, but it’s more than enough to differentiate between, say, a man and a woman, or an adult and a child. Radar, thermal, and hyperspectral sensors allow satellites to see through foliage, detect whether a factory is operating, or even look underground.
An imagery satellite has limits, though. It shoots pictures from directly above, so reading a license plate is impossible unless the plate is on the hood of the car! The satellite travels at several miles per second as it passes overhead, reducing its time over the target to bare minutes; its orbit might bring it over the target from twice a day to only once every three days. On each pass, it views a comparatively small area – 100 square miles or less. These problems mean that spy satellites are less all-seeing eyes than just one of several means of gathering data.
Those running realistic techno-thriller games should also know that real-time video – as depicted in the movie Enemy of the State – is unlikely. At TL7, satellite imagery is delayed by several days to a week because the film capsule must be dropped from the orbiting satellite, reenter, and then be recovered and processed! At TL8, digital pictures are relayed to communications satellites, so only a few minutes pass between when an image is taken and when it’s delivered to those who need it. But it still isn’t real-time video.
Real-time video is most likely to come from spy planes – or, at TL8, from unmanned aerial vehicles (UAVs) such as Predator and Global Hawk. Such craft can fly high enough to be virtually undetectable by ground observers, and for long enough to snoop around an area for dozens of hours. Speed seldom exceeds 100 mph, which is another plus.
Most spy satellites have Telescopic Vision 10-15 (black-and-white only, at TL7). Gathering good-quality satellite imagery requires an Electronics Operation (Sensors) roll, but determining what the image reveals requires the Intelligence Analysis skill. President John F. Kennedy stared blankly at the unprocessed images he was given during the Cuban Missile Crisis; he saw only an empty field until image analysts explained what was there.
This is a multipurpose identity scanner. It can identify a fingerprint, a retina print, a voiceprint, or a DNA print, if this data is in a database accessible to it. Fingerprints and retina prints must be taken from a one-yard range, while DNA prints require a hair or blood sample. At TL9, it takes 10 seconds to scan a fingerprint, retina print, or DNA print; voiceprints can be scanned in one second. At TL10+, all scans take one second.
Handheld Biometric Scanner (TL9): A handheld device used by security personnel to check identities. $1,000, 1 lb., A/1 day.
Biometric Scanlock (TL9): Integrated into a lock on a door, case, or other device. Cost, weight, and power are the same as the handheld scanner.
Security sensors are designed to detect an intruder and then take action, whether sounding an alarm, activating gas, or closing doors. They run indefinitely using vehicle or building power; most have backup power cells. Make a Traps-2 roll to spot them. Electro-optical cameras, infrared cameras, hyperspectral cameras, short-range terahertz radars, and imaging radars are among the most common types. Add $100/lb. to cover the mount and installation costs.
These are short-range, ultra-high resolution sensors that scan whatever passes between them. The device usually consists of transmitter and receiver with a one- to threeyard range. They can be concealed in doorways or luggage conveyer belts, and may be set to trigger automatic doors, weapons, or force fields if they detect anything. They are remotely controlled, with information displayed on a video screen or other interface. They work automatically, but their results must be interpreted by the Search skill roll of a person or AI.
X-ray Scanner (TL9): This device uses X-rays to see inside objects, and is much lighter than lower-TL systems. It comes with a microcommunicator, a data port, and Xray analysis software. Add +4 to Explosives (EOD) skill when using it to defuse a bomb, and to Search skill when examining the contents of a package. $2,000, 5 lbs. (2.5 lbs. per module), C/4 hr. LC3.
T-Ray Portal Scanner (TL9): This illuminates its target with tunable terahertz radiation. The absorption spectra of the resulting image is analyzed and cross-referenced with a database to check for chemicals of interest. This is good for locating drugs or other chemicals, explosives, and weapons. Gives +4 to Search skill for identifying non-living objects. $10,000, 10 lbs., C/4 hr. LC3.
Explosives Scanner (TL9): A nuclear quadrupole resonance (NQR) scanner excites a specific material (typically nitrogen) into a higher quantum mechanical energy state using a radiofrequency beam. When the material “relaxes” it gives off a distinct signal. The scan provides an unambiguous yes/no answer to the presence of all chemical explosives, but does not detect energy-based explosives. It provides +4 to Search skill to detect chemical explosives. $4,000, 10 lbs. C/4 hr. LC3.
Ultrascan Portal (TL10^): This uses para-radar to perform an fast atomic-level scan of the target’s body, including a detailed bio-scan. It gives a +TL/2 (quality) bonus to Search rolls to find anything, and can match a person by their genetic code against a database. It can be fooled by distortion fields (p. 99). $10,000, 10 lbs., D/100 hr. LC3.
A swarm of data-gathering microbots with short-range infrared, tactile, visual, and chemical sensors. They search anyone they contact with Search-12 and Diagnosis-8, crawling over the subject’s body and noting what is carried where. They are limited to performing either a skin search (+3 to Search skill) or a body cavity search (+5 to Search skill); see Search, p. B219. They also record the subject’s physical dimensions (height and build), species, gender, and can note if he’s running a fever.
Since a swarm can’t store data from more than one sweep, it should be uploaded to a computer and reviewed. It can also be accessed in real time as it is used. In addition to performing their own search, security swarms can be teleoperated to remotely perform skin or body cavity searches; as such, they provide a +1 (quality) bonus to Search skill. $1,000/square yard. LC3.