Table of Contents

Guide to SMES Units

How the big battery works.

SMES

Superconducting Magnetic Energy Storage (often shortened to SMES) is a device used to store electrical power. While SMES units are very effective, they are also expensive, requiring high end circuit board and expensive parts. If you need to quickly replace the SMES you may try using cheaper but less powerful Cell Rack PSU instead. SMES units may be upgraded to increase their capacity and/or maximal input/output levels.

Configuration

SMES units may be configured via interface which is opened by left-clicking with empty hand on the SMES. Alternatively you may use the RCON console to operate most SMESs on station. The interface looks like this:

SMES Unit:

Stored Charge: 130.9 kWh / 200 kWh - 65%

Input Management:

Charge Mode: [Auto] <Off> [Partially Charging]

Input Level: 1000 kW - 100%

Input Draw: 542.9 kW

Output Management:

Output Status: [Online] <Offline> [Outputting]

Output Level: 1000 kW - 100%

Output Load: 544.5 kW

Input

Each SMES needs terminal to operate properly. This terminal allows you to charge the SMES from one power network, and output into another one. By using appropriate controls in the GUI you may set any input value up to certain cap. This cap can be increased by upgrading the SMES unit, as described further in this guide. Also, please note that setting larger input than available will cause the SMES to enter “Partially Charging” state. This means the SMES is still charging, but not at set input rate. You may choose from two input options - OFF and AUTO.

Output

The SMES outputs power into wire placed directly under it. Usually, you want to keep output lower than input, however sometimes you may have to increase output to compensate for larger demands. This is common with main Engine SMES when setting up Substations. The output rate is also capped and also upgradable. You may choose from two output options which are self explanatory - ONLINE and OFFLINE.

Deconstruction

Required tools:

Preparations

Deconstruction Steps

SMES Failure

Disabling failsafes, as outlined in Hacking section of this page may cause SMES Failure when removing the components (crowbar step), or adding new components (inserting new coils). Chance of “something bad” happening is directly proportional to SMES charge percentage. SMES charged to 75% has 75% probability of failing, etc. If this failure happens, effects are once again related to charge percentage.

Hacking

SMES units may be hacked to enable or disable various features. Remember to wear your protective equipment or risk injury. To access the wiring open front panel with screwdriver. Then click the SMES with empty hand to open up wiring window. There are five wires, which have randomized colors every round.

Construction

Required Tools

Construction Steps

Terminal

New SMES starts without terminal. Furthermore, terminals may be damaged by explosions or similar effects. Fortunately, installing new terminal is easy.

RCON Settings

RCON, or Remote CONtrol, allows remote operation of SMESs from RCON console. To allow usage of RCON you have to set RCON tag. This tag has to be unique (ie. do not use tag already used by another SMES). To set new tag click the SMES with multitool. If you wish to disable RCON you may either cut the appropriate wire (see Hacking section), or use tag “NO_TAG”.

Upgrading

There are four types of coils in existence:

Name Capacity Throughput
Superconductive Magnetic Coils 50kWh 250kW
Superconductive Capacitance Coils 250kWh 100kW
Superconductive Transmission Coils 20kWh 1250kW
Basic Superconductive Magnetic Coils 10kWh 150kW

Two of each type of Magnetic, Transmission, and Capacitance are in each Engineering Hard Storage (Decks B and D), in one of the crates.

Three SMES layouts are commonly used:

When building an SMES you may add only a single Magnetic Coil into it. However, you may add up to five more coils later. This process is slightly more complex than terminal replacement.

Performing the Upgrade